

DECLARATION OF PERFORMANCE¹ N° EN 1090-1 DoP ENG. 03 EN10219-2

1 Unique identification code of the product-type:

Component(s)² according to EN 1090-2 following customer's specification and produced out of cold formed welded structural hollow sections of non-alloy and fine grain steels, made according to EN 10219-1+2; with types and grades:

- o S235JRH 1.0039
- o S275JOH 1.0149
- o S275J2H 1.0138
- S355JOH 1.0547
- S355J2H 1.0576
- S355K2H 1.0512
- o S275NH 1.0493
- S275NLH 1.0497
- S355NH 1.0539
- S355NLH 1.0549
- o S460NH 1.8953
- S460NLH 1.8956
- Applied processes: activities of manufacturing (3.6), execution (3.7), preparation (3.12) according to EN 1090-2+A1.
- Applicable processes: decoiling and cutting to length of sheets, sawing, shearing and nibbling, thermal
 cutting, laser cutting, drilling of holes, shot blasting, painting, batch galvanizing, electrolytic zinc coating,
 coating
- 2 Intended use/es:

For structural use in all types of construction works according to EN 1090-1.

3 Manufacturer:

SAEY nv/sa – SAEY sarl, Industrielaan 4, B-8501 Heule

- 4 Authorised representative:: not of application
- 5 System of AVCP:

System 2+, Declaration of the performance of the essential characteristics of the construction product by the manufacturer

¹ As reproduced from COMMISSION DELEGATED REGULATION (EU) No 574/2014 of 21 February 2014 amending Annex III to Regulation (EU) No 305/2011 of the European Parliament and of the Council on the model to be used for drawing up a declaration of performance on construction products. The CPR* takes precedence over the (annexes ZA of the harmonised) standards that must still be reviewed. [* Including its article 61 "The power to adopt delegated acts referred to in Article 60 shall be conferred on the Commission for a period of 5 years from 24 April 2011."]

² According to article 3.11 of EN 1090-2:2008+A1:2011 (E)

6 Harmonised standard, Notified body:

EN 1090-1:2009+A1:2011, OCAB-OCBS CE1148 performed initial inspection of the manufacturing plant and of factory production control and performs continuous surveillance, assessment and evaluation of factory production control under system **2+** and issued the certificate of conformity of the factory production control **2014-07-11**.

7 Declared performance(s)

	NBN EN 1090-1+A1 : 2012									
Essential characteristics	Performance	Harmonised technical specification EN 1090-1								
Tolerances on dimensions and shape	Tolerances according to the class for fundamental tolerances in EN1090-2 and according to article 6.11 of EN10219-1	4.2 ; 5.3								
Weldability	According to article 6.8.1 and annex A and B of EN10219-1	4.3 ; 5.4								
Fracture toughness, Impact resistance	According to article 6.7 .2-4 of EN10219-1 and table A.2-3, B.3-5	4.3 ; 5.4 ; 4.8 ; 5.10								
Load bearing capacity	According to article 6.7.1 of EN10219-1 and table A.2-3, B.3-5	4.5.1 ; 4.5.2 ; 5.6.2								
Deformation in Service limit state	According to article 6.7.1 of EN10219-1 and table A.2-3, B.3-5	4.5.5								
Fatigue strength	NPD	4.5.1 ; 4.5.3 ; 5.6.2								
Resistance to fire	NPD	4.5.1 ; 4.5.4 ; 5.7								
Reaction to fire	Class A1 for products without coating	4.6 ; 5.8								
Release of cadmium and its compounds	NPD	4.7 ; 5.9								
Emission of radioactivity	NPD	4.7 ; 5.9								
Durability	According to article 6.8.2 of EN10219-1. Suitability for hot dip galvanising according to EN ISO 1461 and EN ISO 14713-2	4.9 ; 5.11								

- 8 Appropriate Technical Documentation and/or Specific Technical Documentation:
 - See included annexes (EN 10219-1: annex A (Table A.1, A.2, A.3) and B (Table B.1, B.2, B.3, B.4, B.5) and CE-marking of the delivered components.

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Bernard Saey Managing Director

Heule, August 13th, 2018.

INCLUDED ANNEXES: EN 10219-1: annex A (Table A.1, A.2, A.3) and B (Table B.1, B.2, B.3, B.4, B.5)

Annex A (normative)

Structural hollow sections of non-alloy quality steels — Chemical composition and mechanical properties

Table A.1 — Chemical composition — Cast analysis for product thickness ≤ 40 mm

Steel grade Type of de		Type of de-									
Steel name	Steel number	oxidation 8	С	Si	Mn	Р	S	ИÞ			
S235JRH	1.0039	FF	0,17	-	1,40	0,040	0,040	0.009			
S275J0H	1.0149	FF	0,20	_	1,50	0,035	0,035	0,009			
S275J2H	1.0138	FF	0,20	_	1,50	0,030	0,030	_			
S355J0H	1.0547	FF	0,22	0,55	1,60	0,035	0,035	0,009			
S355J2H	1.0576	FF	0,22	0,55	1,60	0,030	0,030	_			
S355K2H	1.0512	FF	0,22	0,55	1,60	0,030	0,030	_			

a The deoxidation method is designated as follows:

Table A.2 — Maximum carbon equivalent value (CEV) based on cast analysis a

Steel g	Maximum CEV for nominal	
Steel name	Steel number	thicknesses ≤ 40 mm
		%
S235JRH	1.0039	0,35
S275J0H	1.0149	0,40
S275J2H	1.0138	0,40
S355J0H	1.0547	0,45
S355J2H	1.0576	0,45
S355K2H	1.0512	0,45
a See 6.6.2, Option 1.2.		

FF: Fully killed steel containing nitrogen binding elements in amounts sufficient to bind available nitrogen (e.g. min. 0,020 % total Al or 0,015 % soluble Al).

b The maximum value for nitrogen does not apply if the chemical composition shows a minimum total Al content of 0,020 % with a minimum Al/N ratio of 2:1, or if sufficient other N-binding elements are present. The N-binding elements shall be recorded in the Inspection Document.

Table A.3 — Mechanical properties of non-alloy steel hollow sections in thicknesses ≤ 40 mm

							00000 2	40 1111111	
Steel grade Steel Steel			um yield gth $R_{\rm eff}$	Tensile strength R _n		Minimum elongation	Minimum impact energy KV e		
name	number	MPa		MPa		%		J	
		Specified	thickness	Specified thickness		Specified thickness	at test tempera		ture of
		mm		mm		mm			
		≤ 16	> 16 ≤ 40	< 3	≥3 ≤40	≤ 40	-20°C	0 °C	20 °C
S235JRH ^a	1.0039	235	225	360-510	360-510	24 b			27
S275J0H ^a	1.0149							27	-
S275J2H	1.0138	275	265	430-580	410-560	20 °	27		-
\$355J0H ^a	1.0547							-	-
S355J2H	1.0576	355	345	510-680	470-630	20.6		27	-
S355K2H	1.0512		0.00	0.000	470.030	20 °	27		-
	1.0012						40 ^r	-	-

The impact properties are verified only when Option 1.3 is specified.

b For thicknesses > 3 mm and section sizes D/T < 15 (round) and (B+H)/2T < 12,5 (square and rectangular) the minimum elongation is reduced by 2. For thicknesses ≤ 3 mm the minimum value for elongation is 17 %.</p>

For section sizes D/T < 15 (circular) and (B+H)/2T < 12,5 (square and rectangular) the minimum elongation is reduced by 2.</p>

d For thicknesses < 3 mm see 9.2.2.</p>

For impact properties for reduced section test pieces see 6.7.2.

f This value corresponds to 27J at -30 °C (see EN 1993-1-1).

Annex B (normative)

Structural hollow sections of fine grain steels — Chemical composition and mechanical properties

ž	
condition	
feedstock	
'n,	
≥40	
thicknesses	
duct	
or proc	
 Cast analyses fe 	
composition	
Chemical	
ĭ	
le B.1	
Tabl	

				-				_				
	z š	1	0,015		0,015		0,025					
	Cu °	i c	0,35		0,35		0,70					
	Mo max.	,	0,10		0,10		0,10					
	Nax.	i c	08'0		0,50		08'0					
	C. max.	6	06,0		06,0		0,30					
	Ti max.	8	0,03		0,03		0,03					
mass	Al total ^d min.	000	0,020		0,020		0,020		ei			
% by mass	V max.	i c	co'o		0,12		0,20		structur			
	Nb max.	0	oco'o	0	0,050		0,050		ne grained			
	S max.	0,030	0,025	0,030	0,025	0,030	0,025		aving a fin			
	тах.	0,035	0,030	0,035	0,030	0,035	0,030		gen and h			ent.
	Mn	050 4 40	0,50-1,40		0,50-1,65		07,1-00,1		available nitro			не соррег сол
	Si max.	0.40	0,40	0	00,0		0,80		o bind the		apply.	st half of th
	С шах.	000	07'0	0,20	0,18	5	0,20		sufficient to		t does not	be at leas
Classification	,	ő	ŝ	SD		Ç	ô		The deoxidation method is designated as follows: GF = Fully killed steel containing nitrogen binding elements in amounts sufficient to bind the available nitrogen and having a fine grained structure.		imum total Al content does not apply.	If the copper content is greater than 0,30 % then the nickel content shall be at least half of the copper content.
Type of	Д	30	5	Š	5	i.	5		ated as follows: ntrogen binding el	peel.	e present, the min	an 0,30 % then th
Steel grade	Steel number	1.0493	1.0497	1.0539	1.0549	1.8953	1.8956		The deoxidation method is designated as follows: GF = Fully killed steel containing nitrogen binding	QS = quality steel; SS = special steel,	if sufficient N-binding elements are present, the minimum	content is greater th
Steel	Steel name	S275NH	S275NLH	S355NH	S355NLH	S460NH	S460NLH	a See 6.3.	b The deoxidation GF = Fully kills	c QS = quality s	d If sufficient N-t	e If the copper o
_											_	,

г					_											
		N max.		0,020		0,020			0,020		0,025					
		Mo	S S	0,20		0,20			0,20		0,20					
		Ni max.		06,0		06,0			0,30		0,30					
		Ti max.		0,050		0,050			0,050		0,050					
		Al total d min.		0,020		0,020			0,020		0,020					
	% by mass	/ v = /		0,08		0,10			0,12		0,12					
	4%	N N P		0,050		0,050		0,050		0,050		0,050			0,050	
		S max.	0,030	0,025	0,030	0.025		0,030	0,025	0.030	0.025					
		P max.	0,035	0,030	0,035	0.030		0,035	0,030	0,035	0.030					
		Mn max.		35,		1,50		120	0,1		1,70					
		Si max.		0,50		0,50		0	5		0,60					
		n ax.		£1.0		0,14		0.18	2		0,16					
Classification	ciassification		S.	00		SS		07	}		SS					
Turne	deoxidation	Δ	35	GF.		£		±		GF			45			
orade		Steel number	1.8843	1.8844	1.8845	1.8846	1.8847		1.8848	1.8849	1.8850					
Steel	ame Steel number b		S275MH	S275MLH	S355MH	S355MLH	S420MH		S420MLH	S460MH	S460MLH	The state of the s				
									_			-				

Table B.2 — Chemical composition - Cast analysis for product thicknesses ≤ 40 mm, feedstock condition M ^a

The deoxidation method is designated as follows: GF = Fully killed steel containing nitrogen binding elements in amounts sufficient to bind the available nitrogen and having a fine grained structure.

SS = special steel

of if sufficient N-binding elements are present, the minimum total A content does not apply.

The total sum of Cr., Cu and Mo shall not be higher than 0,60 %.

TELEFOON (32) (56) 35.42.00 TELEFAX (32) (56) 35.64.31 BTW TVA BE 0448.146.433 – RPR RPM Kortrijk - E-mail : info@saey.com

See 6.3.

Table B.3 — Maximum carbon equivalent value based on cast analysis

	Steel grade				
Steel name	Steel number	Maximum CEV for nominal thicknesses ≤ 40 mm			
S275NH	1.0493	70			
S275NLH	1.0497	0,40			
S275MH	1.8843				
S275MLH	1.8844	0,34			
\$355NH	1.0539				
S355NLH	1.0549	0,43			
\$355MH	1.8845				
S355MLH	1.8846	0,39			
S420MH	1.8847				
S420MLH	1.8848	0,43			
S460NH	1.8953	0.53			
S460NLH	1.8956	0,53			
S460MH	1.8849				
S460MLH	1.8850	0,46			

Table B.4 — Mechanical properties of hollow sections in thicknesses ≤ 40 mm — Feedstock material condition N

	Steel grade		num yield	Tensile	Minimum	Minimum impact energy K		
Steel name	Steel number	strength Reff		strength R_{eff} strength R_{m}		minimum impact energy XV		
			MPa	MPa	ab %		,i	
		thic	ecified kness mm	Specified thickness mm	Specified thickness mm	at test temperature of		
		≤ 16	> 16 ≤ 40	≤ 40	≤ 40	-50 °C	-20 °C	
S275NH	1.0493							
S275NLH	1.0497	275	265	370-510	24	27	40 d	
S355NH	1.0539					21	-	
S355NLH	1.0549	355	345	470-630	22	-	40 d	
S460NH	1.8953					27	-	
S460NLH	1.8956	460	440	540-720	17	-	40 d	
	1.0000		. 10	0.10.720	''	27		

For section sizes D/T < 15 (circular) and (B+H)/2T < 12.5 (square and rectangular) the minimum elongation is reduced by 2.</p>

For thicknesses < 3 mm see 9.2.2.</p>

⁶ For impact properties for reduced section test pieces see 6.7.2.

d This value corresponds to 27J at –30 °C (see EN 1993-1-1).

Table B.5 — Mechanical properties of hollow sections in thicknesses \leq 40 mm — Feedstock material condition M

Steel	grade	Minim	um yield	Tensile	Minimum		
Steel name	Steel number	strength R_{ell} strength R_{m} elongation A		Minimum im	oactenergy <i>KV</i> ^c		
			ИРа	MPa	%		J
		thic	ecified kness nm	Specified thickness mm	Specified thickness mm	at test te	mperature of
		≤16	> 16 ≤ 40	≤ 40	≤ 40	-50 °C	-20 °C
S275MH	1.8843						40 d
S275MLH	1.8844	275	265	360-510	24	27	40 -
S355MH	1.8845					2.1	40 d
S355MLH	1.8846	355	345	450-610	22	27	40 d
S420MH	1.8847						
S420MLH	1.8848	420	400	500-660	19	- 07	40 ^d
S460MH	1.8849					27	-
S460MLH	1.8850	460	440	530-720	17	27	40 d

a For section sizes D/T < 15 (circular) and (B+H)/2T < 12,5 (square and rectangular) the minimum elongation is reduced by 2.

For thicknesses < 3 mm see 9.2.2.</p>

c For impact properties for reduced section test pieces see 6.7.2.

d This value corresponds to 27J at -30 °C (see EN 1993-1-1).