

DECLARATION OF PERFORMANCE¹ N°

EN 1090-1 DOP ENG. 03.2 EN10219-2

Unique identification code of the product-type: 1

> Component(s)² according to EN 1090-2 following customer's specification and produced out of cold formed welded structural hollow sections of non-alloy and fine grain steels, made according to EN 10219-1+2; with types and grades:

- S235JRH 1.0039 0
- S275JOH 1.0149 0
- S275J2H 1.0138 0
- S355JOH 1.0547 0
- S355J2H 1.0576
- S355K2H 1.0512
- S275NH 1.0493 S275NLH – 1.0497
- S355NH 1.0539
- S355NLH 1.0549
- S460NH 1.8953
- S460NLH 1.8956 0
- Applied processes: activities of manufacturing (3.6), execution (3.7), preparation (3.12), batch galvanizing (EN1461 / EN10240) according to EN 1090-2+A1.
- Applicable processes: decoiling and cutting to length of sheets, sawing, shearing and nibbling, thermal cutting, laser cutting, drilling of holes, shot blasting, painting, batch galvanizing, electrolytic zinc coating, coating
- Intended use/es: 2

For structural use in all types of construction works according to EN 1090-1.

Manufacturer: 3

SAEY nv/sa – SAEY sarl, Industrielaan 4, B-8501 Heule

- 4 Authorised representative:: not of application
- 5 System of AVCP:

System 2+, Declaration of the performance of the essential characteristics of the construction product by the manufacturer

¹ As reproduced from COMMISSION DELEGATED REGULATION (EU) No 574/2014 of 21 February 2014 amending Annex III to Regulation (EU) No 305/2011 of the European Parliament and of the Council on the model to be used for drawing up a declaration of performance on construction products. The CPR* takes precedence over the (annexes ZA of the harmonised) standards that must still be reviewed. [* Including its article 61 "The power to adopt delegated acts referred to in Article 60 shall be conferred on the Commission for a period of 5 years from 24 April 2011."] ² According to article 3.11 of EN 1090-2:2008+A1:2011 (E)

6 Harmonised standard, Notified body:

EN 1090-1:2009+A1:2011, OCAB-OCBS CE1148 performed initial inspection of the manufacturing plant and of factory production control and performs continuous surveillance, assessment and evaluation of factory production control under system **2+** and issued the certificate of conformity of the factory production control **2014-07-11**.

7 Declared performance(s)

	NBN EN 1090-1+A1 : 2012										
Essential characteristics	Performance	Harmonised technical specification EN 1090-1									
Tolerances on dimensions and shape	Tolerances according to the class for fundamental tolerances in EN1090-2 and according to article 6.11 of EN10219-1	4.2 ; 5.3									
Weldability	According to article 6.8.1 and annex A and B of EN10219-1	4.3 ; 5.4									
Fracture toughness, Impact resistance	According to article 6.7 .2-4 of EN10219-1 and table A.2-3, B.3-5	4.3 ; 5.4 ; 4.8 ; 5.10									
Load bearing capacity	According to article 6.7.1 of EN10219-1 and table A.2-3, B.3-5	4.5.1 ; 4.5.2 ; 5.6.2									
Deformation in Service limit state	According to article 6.7.1 of EN10219-1 and table A.2-3, B.3-5	4.5.5									
Fatigue strength	NPD	4.5.1 ; 4.5.3 ; 5.6.2									
Resistance to fire	NPD	4.5.1 ; 4.5.4 ; 5.7									
Reaction to fire	Class A1 for products without coating	4.6 ; 5.8									
Release of cadmium and its compounds	NPD	4.7 ; 5.9									
Emission of radioactivity	NPD	4.7 ; 5.9									
Durability	Hot dip galvanised according to EN ISO 1461.	4.9 ; 5.11									

- 8 Appropriate Technical Documentation and/or Specific Technical Documentation:
 - See included annexes (EN 10219-1: annex A (Table A.1, A.2, A.3) and B (Table B.1, B.2, B.3, B.4, B.5) and CE-marking of the delivered components.

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Bernard Saey Managing Director

Heule, June 18th , 2021.

INCLUDED ANNEXES : EN 10219-1 : annex A (Table A.1, A.2, A.3) and B (Table B.1, B.2, B.3, B.4, B.5)

Annex A

(normative)

Structural hollow sections of non-alloy quality steels — Chemical composition and mechanical properties

Table A.1 — Chemical composition — Cast analysis for product thickness ≤ 40 mm

S235JRH S275J0H S275J2H	eel number 1.0039 1.0149 1.0138	FF FF	C 0,17 0,20	Si 	Mn 1,40 1,50	P 0,040 0.035	S 0,040	N ^b 0.009
S275J0H S275J2H	1.0149	FF						0.009
S275J2H			0,20		1.50	0.025		
	1.0138				-,	0,035	0,035	0,009
00551011		FF	0,20	_	1,50	0,030	0,030	
S355J0H	1.0547	FF	0,22	0,55	1,60	0,035	0,035	0,009
\$355J2H	1.0576	FF	0,22	0,55	1,60	0,030	0,030	
S355K2H	1.0512	FF	0,22	0,55	1,60	0,030	0,030	_
The deoxidation method	d is designated as	follows:						

sufficient other N-binding elements are present. The N-binding elements shall be recorded in the Inspection Document.

Table A.2 — Maximum carbon equivalent value (CEV) based on cast analysis ^a

Steel	Maximum CEV for nominal			
Steel name	Steel number	thicknesses ≤ 40 mm		
		%		
S235JRH	1.0039	0,35		
S275J0H	1.0149	0,40		
S275J2H	1.0138	0,40		
\$355J0H	1.0547	0,45		
S355J2H	1.0576	0,45		
S355K2H	1.0512	0,45		

Steel grade Steel Steel			Tensile s	trength R _n	Minimum elongation	Minimum impact energy KV *			
number	MPa Specified thickness		in a		%	J at test temperature of			
					Specified thickness				
	m	nn	m	ım	mm				
	≤ 16	> 16 ≤ 40	< 3	≥3 ≤40	≤ 40	-20°C	0°C	20 °C	
1.0039	235	225	360-510	360-510	24 b			27	
1.0149							27		
1.0138	275	265	430-580	410-560	20 ^c		21		
1.0547						27		-	
						-	27	-	
1.0576	355	345	510-680	510-680 470-630	20 c	27	-		
1.0512						40 ^r			
	Steel number 1.0039 1.0149 1.0138 1.0547 1.0576	Steel stren number M Specified m ≤ 16 m 1.0039 235 1.0149 275 1.0547 355	Steel strength R_{eff} Number MPa Specified thickness ≤ 16 > 16 \leq 40 1.0039 235 225 1.0149 275 265 1.0547 355 345	Steel MPa Month Retiin number MPa M Specified thickness Specified ≤ 16 > 16 ≤ 40 < 3	Steel number MPa MPa Specified thickness mm Specified thickness mm Specified thickness mm 216 > 16 ≤ 40 < 3	Steel MPa MPa A^{d} number MPa MPa % Specified thickness Specified thickness Specified thickness Specified thickness MPa MPa MPa % $Specified$ thickness Specified thickness Specified thickness Specified thickness MPa MPa MPa MPa MPa $Specified$ thickness mm mm mm 1.0039 235 225 $360-510$ 24^{b} 1.0149 275 265 $430-580$ $410-560$ 20^{c} 1.0547 355 345 $510-680$ $470-630$ 20^{c}	Steel number MPa Minimum elongation A^{d}	Steel MPa MPa Minimum elongation Minimum in energy Ki number MPa MPa % J Specified thickness Specified thickness Specified thickness Mma Mma J 1.0039 235 225 360-510 360-510 24 b - - 1.0149 275 265 430-580 410-560 20 ° - - 1.0547 355 345 510-680 470-630 20 ° 27 - 1.0512 355 345 510-680 470-630 20 ° 27 -	

Table A.3 — Mechanical properties of non-alloy steel hollow sections in thicknesses ≤ 40 mm

^a The impact properties are verified only when Option 1.3 is specified.

b For thicknesses > 3 mm and section sizes D/T < 15 (round) and (B+H)/2T < 12.5 (square and rectangular) the minimum elongation is reduced by 2. For thicknesses ≤ 3 mm the minimum value for elongation is 17 %.</p>

For section sizes D/T < 15 (circular) and (B+H)/2T < 12.5 (square and rectangular) the minimum elongation is reduced by 2.</p>

d For thicknesses < 3 mm see 9.2.2.</p>

For impact properties for reduced section test pieces see 6.7.2.

f This value corresponds to 27J at -30 °C (see EN 1993-1-1).

Annex B (normative) Structural hollow sections of fine grain steels — Chemical composition and mechanical properties

		N R		0,015		0,015		0,025				
		Cu ^e max.	3	0,35		0,35		0,70				
		Mo max.		0,10		0,10		0,10				
, z		Ni Nax.		02'0		0,50		0,80				
ndition		, Тах.	0	05'0		0:30		0,30	1			
ock co		Ti max.	000	0,03		0'03	-	0'03				
m, feedsto	nass	Al total ^d min.	0.000	070'0		0,020		0,020		é		
≤40 m	% by mass	× max.	100	en'n		0,12	1	0,20		structure		
esses		Nb .xem	010 0	nen'n	0100	0,050,0	010	0,050,0		e grained		
t thickn		s max.	0.030	0,025	0,030	0,025	0,030	0,025	1	aving a fin		
produc		e ž	0,035	0,030	0,035	0,030	0,035	0,030	1	d bna ned		
alyses for		Mn	0.50.4.40	04'I-00'D	201.000	0'30-1'08'0	02.7.00.7	1,00-1,70		available nitro		
Castar		ax.	010	040	0	ne'n	000	09'0		o bind the		apply.
ition —		С тах.	000	nz'n	0,20	0,18	200	07'0		sufficient to		t does not
Table B.1 — Chemical composition — Cast analyses for product thicknesses ≤40 mm, feedstock condition N ^a	Classification	2	oC	8	as		0	0		The deoxidation method is designated as follows: GF = Fully killed steel containing nitrogen binding elements in amounts sufficient to bind the available nitrogen and having a fine grained structure.		If sufficient N-binding elements are present, the minimum total AI content does not apply.
ble B.1 — Ch	Type of	b	5	5	LC C	5	U.C.	5		ated as follows: litrogen binding el	beel.	e present, the min
Ta	Steel grade	Steel number	1.0493	1.0497	1.0539	1.0549	1.8953	1.8956		The deoxidation method is designated as follows: GF = Fully killed steel containing nitrogen binding	QS = quality steel; SS = special steel,	binding elements an
	Steel	Steel name	S275NH	S275NLH	S355NH	S355NLH	S460NH	S460NLH	a See 6.3.	^b The deoxidatio GF = Futly kille	c QS = quality st	d If sufficient N-b
												_

If the copper content is greater than 0,30 % then the nickel content shall be at least half of the copper content.

a

INDUSTRIELAAN 4 B-8501 KORTRIJK-HEULE Belgium

		1 2		~	1										
		N max.		0,020		0,020		0,020		0,025					
		e oM	mex.	0,20		0,20		0,20		0,20					
_		Ni max.		0,30		0,30		0:30		0,30					
dition M		Ti max.		0,050		0,050		0,050		0,050					
stock con		Al total ^d min.		0,020		0,020		0,020		0,020					
im, feeds	% by mass	> max		0'08		0,10	\uparrow	0,12 0		0,12 0			e		
es ≤ 40 m	4%	Nb Max.		0,050		0,050		0,050		0,050			ained structu		
hickness		S max.	0,030	0,025	0,030	0,025	0.030	0.025	0.030				ng a me gr		
product t		P max.	0,035	0,030	0,035	0,030	0.035	0.030	0.035	-		burn hour			
ysis for _I		Mn max.		1,50		1.50		1,70		1,70		ontio often			
ast anal		Si max		0'20		0,50		0,50		0,60		and the sur-		No	
sition - C		υ X		0,13		0,14		0,16		0,16		fficient to b		does not ar	
Table B.2 — Chemical composition - Cast analysis for product thicknesses ≤ 40 mm, feedstock condition M ^a	Classification ^c			20		20		SS		SS		nents in amounts su		um total A content does not apoly.	n 0,60 %.
able B.2 — Ch	Type of	p p	5	5		15		5		Ч		ted as follows: trogen binding eler		present, the minim	il not be higher tha
1		Steel number	1.8843	1.8844	1.8845	1.8846	1.8847	1.8848	1.8849	1,8850		The deoxidation method is designated as follows: GF = Fully killed steel containing nitrogen binding elements in amounts sufficient to bind the serillable element herein a	iei.	If sufficient N-binding elements are present, the minimum	The total sum of Cr, Cu and Mo shall not be higher than 0.
	Steel grade	Steel name	S275MH	S275MLH	S355MH	S355MLH 1	S420MH	S420MLH 1	S460MH 1	S460MLH 1	a See 6.3.	b The deoxidation GF = Fully kited	c SS = special steel.	d If sufficient N-bin	 The total sum of

TELEFOON (32) (56) 35.42.00 TELEFAX (32) (56) 35.64.31 BTW TVA BE 0448.146.433 – RPR RPM Kortrijk - E-mail : info@saey.com

01.1	Steel grade	Maximum CEV for nominal			
Steel name	Steel number	thicknesses ≤ 40 mm %			
S275NH	1.0493	70			
S275NLH	1.0497	0,40			
\$275MH	1.8843				
S275MLH	1.8844	0,34			
\$355NH	1.0539				
S355NLH	1.0549	0,43			
\$355MH	1.8845				
S355MLH	1.8846	0,39			
S420MH	1.8847				
S420MLH	1.8848	0,43			
S460NH	1.8953	0.53			
S460NLH	1.8956	0,55			
S460MH	1.8849				
S460MLH	1.8850	0.46			

Table B.3 — Maximum carbon equivalent value based on cast analysis

Table B.4 — Mechanical properties of hollow sections in thicknesses ≤ 40 mm — Feedstock material condition N

Steel	grade	Minin	num yield	Tensile	Minimum	Mini and			
Steel name Steel number		stre	ngth _{Reff}	strength R _m	elongation /1 ab %	Minimum impact energy K			
		Spe thic	ecified ckness mm	Specified thickness mm	ecified Specified at test tempe kness thickness		J mperature of		
0.0.0		≤ 16	> 16 ≤ 40	≤ 40	≤ 40	-50 °C	-20 °C		
S275NH	1.0493	075					40 d		
S275NLH	1.0497	275	265	370-510	24	27	40		
S355NH S355NLH	1.0539	355	345	470-630	22	-	40 d		
S460NH	1.8953			410.000	22	27	-		
S460NLH	1.8956	460	440	540-720	17	-	40 ^d		
						27			
	es D/T < 15 (circular) s < 3 mm see 9.2.2.	and (B+H)	/2T < 12,5 (squ	are and rectangular) the minimum elong	ation is reduced t	vy 2.		

^c For impact properties for reduced section test pieces see 6.7.2.

d This value corresponds to 27J at -30 °C (see EN 1993-1-1).

	grade	Minim	um yield	Tensile	Minimum	Minimum im-	and an and the second	
Steel name	Steel number	strer	ngth R _{ell}	strength Rm	elongation A	Minimum impact energy K		
					ab			
			/IPa	MPa	%	J at test temperature of		
			cified	Specified thickness	Specified			
			nm	mm	thickness			
				1000	mm			
		≤16	> 16 ≤ 40	≤40	≤ 40	-50 °C	-20 °C	
S275MH	1.8843					-	40 d	
S275MLH	1.8844	275	265	360-510	24	27	40-	
S355MH	1.8845					21	40 d	
S355MLH	1.8846	355	345	450-610	22	27	40 *	
5420MH	1.8847					21	-	
5420MLH	1.8848	420	400	500-660	19		40 ^d	
5460MH	1.8849					27	-	
S460MLH	1.8850	460	440	530-720	17	-	40 ^d	
						27	-	
POI 900001 82	es D/T < 15 (circular)	and (8+H)	2T < 12,5 (squ	are and rectangular) the minimum elong	ation is reduced b	y 2.	
For thicknesse	s < 3 mm see 9.2.2.							
For impact pro	perties for reduced se	action test n	ieces see 6.7 :	2				

Table B.5 — Mechanical properties of hollow sections in thicknesses \leq 40 mm — Feedstock material condition M

For impact properties for reduced section test pieces see 6.7.2.

d This value corresponds to 27J at -30 °C (see EN 1993-1-1).